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Fitzpatrick transform of monotone relations in
Hadamard spaces

A. Moslemipour, M. Roohi, M. R. Mardanbeigi and M. Azhini

Abstract

In the present paper, monotone relations and maximal monotone
relations from an Hadamard space to its linear dual space are investi-
gated. Fitzpatrick transform of monotone relations in Hadamard spaces
is introduced. It is shown that Fitzpatrick transform of a special class
of monotone relations is proper, convex and lower semi-continuous. Fi-
nally, a representation result for monotone relations is given.

1 Introduction

The notion of spaces of non-positive curvature goes back to the work of J.
Hadamard and E. Cartan in the 1920’s. In 1950, H. Busemann and A.D.
Aleksandrov have generalized the concept of geodesic metric space based on
the concept of manifolds with the non-positive sectional curvature. Gromov,
conceived the acronym CAT(0) for the non-positive curvature geodesic met-
ric space, where, the letters C, A and T stand for Cartan, Aleksandrov and
Toponogov, respectively. Moreover, 0 is the upper curvature bound. Also,
Gromov developed and investigated many results about CAT(0) spaces.

A complete CAT(0) space is said to be an Hadamard space. Important
examples of Hadamard spaces include the Hilbert spaces, Hadamard mani-
folds, R-trees, Euclidean buildings, nonlinear Lebesgue spaces, Hilbert balls,
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complete simply connected Riemannian manifolds of non-positive sectional
curvature, (see [8, Chapter II.1, 1.15] for many other examples).

Although Hadamard spaces have many properties of Hilbert spaces, such
as weak convergence, metric projections onto closed and convex sets are nonex-
pansive mappings, the Kadek-Klee property, there are remarkable differences
between the Hadamard and Hilbert spaces, for instance, a weak convergent
sequence in a Hadamard space is not necessarily bounded.

In recent years, Hadamard spaces have become of strong interest in convex
optimization, fixed point theory, ergodic theory, geometric group theory and
many important applied topics in mathematics. For background materials on
Hadamard spaces, we refer to the standard texts such as [8, 3, 4, 23].

This paper is organized as follows:
In Section 2, we collect some fundamental definitions and general nota-

tions of Hadamard spaces that will be used throughout of this paper. More
precisely, geodesic path, geodesic space, CN-inequality, Cauchy-Schwarz in-
equality, quasilinearization of Hadamard spaces, dual and linear dual of an
Hadamard space, also some facts regarding convexity in Hadamard spaces is
given. In Section 3, flat Hadamard spaces are characterized. Indeed, it is
shown that X is a flat Hadamard space if and only if X ×X♦

has P-property,
whereX

♦
is the linear dual ofX. In addition, we prove that p-coupling function

is sequentially bw×‖·‖♦-continuous. Section 4 is devoted to investigate (max-
imal) monotone relations on Hadamard spaces. Some examples in flat and
non-flat Hadamard spaces is illustrated. Finally, in Section 5, p-Fitzpatrick
transform for subsets of X × X♦

is introduced. Then, some basic properties
of this transform, specially for monotone relations, are considered. Also, we
discuss the representation of monotone relations from X to X

♦
, by proper,

l.s.c. and convex functions on X ×X♦
.

2 Preliminaries

In this section, we collect some fundamental definitions and results on quasi-
linearization of Hadamard spaces that will be used throughout of this paper.
For more details, we refer to [6, 2, 10].

Let (X, d) be a metric space. We say that a mapping c : [0, 1] → X is a
geodesic path from x ∈ X to y ∈ X if c(0) = x, c(1) = y and

d(c(t), c(s)) = |t− s|d(x, y),

for each t, s ∈ [0, 1]. The image of c is said to be a geodesic segment joining
x and y. A metric space (X, d) is called a geodesic space if there is a geodesic
path between every two points ofX. Also, a geodesic spaceX is called uniquely
geodesic space if for each x, y ∈ X there exists a unique geodesic path from x
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to y. From now on, in a uniquely geodesic space, we denote the set c([0, 1])
by [x, y] and for each z ∈ [x, y], we write z = (1− t)x⊕ ty, where t ∈ [0, 1]. In
this case, we say that z is a convex combination of x and y. Hence, [x, y] =
{(1− t)x⊕ ty : t ∈ [0, 1]}. More details can be found in [3, 8].

A geodesic triangle ∆ :=∆(x1, x2, x3)⊆X consists of vertices x1, x2, x3∈X
and geodesic paths [x1, x2], [x2, x3] and [x1, x3]. A comparison triangles for
geodesic triangle ∆(x1, x2, x3) ⊆ X is a triangle ∆ := ∆(x1, x2, x3) ⊆ E2 such
that d(xi, xj) = ‖xi−xj‖E2 , for i, j ∈ {1, 2, 3}. Now, let a ∈ ∆, the comparison
point for a = (1− t)x1 ⊕ tx2 ∈ [x1, x2] in ∆ is denoted by

a := (1− t)x1 + tx2 ∈ [x1, x2].

We say that ∆ has CAT(0) inequality if for each a, b ∈ ∆ and each comparison
points a, b ∈ ∆,

d(a, b) ≤ ‖a− b‖E2 . (1)

The geodesic space (X, d) is called CAT(0) space if all geodesic triangles sat-
isfy the CAT(0) inequality (1). Hence, CAT(0) spaces are the special class of
geodesic metric spaces in which geodesic triangles are thinner than its compar-
ison triangle in the Euclidean plane. It is well known that (see [11, Proposition
5.1.9]) a geodesic space (X, d) is a CAT(0) space if and only if we have:

d(z, c(t))2 ≤ (1− t)d(z, x)2 + td(z, y)2 − t(1− t)d(x, y)2, (2)

for each geodesic path c : [0, 1]→ X from x to y, each z ∈ X and each t ∈ [0, 1].
Inequality (2) is called CN-inequality. One can show that (for instance see [3,
Theorem 1.3.3]) CAT(0) spaces are uniquely geodesic spaces.

In 2008, Berg and Nikolaev [6] introduced the concept of quasilinearization
in abstract metric spaces. Ahmadi Kakavandi and Amini [2] defined the dual
space for an Hadamard space (X, d) by using the concept of quasilinearization
of X. More precisely, let X be an Hadamard space. For each x, y ∈ X, the
ordered pair (x, y) ∈ X2 is denoted by −→xy and will be called a bound vector in
which x and y are called tail and head of −→xy, respectively. For each x ∈ X,
the zero bound vector at x ∈ X will be written as 0x := −→xx. We identify two
bound vectors −−→xy and −→yx. The bound vectors −→xy and −→uz are called admissible
if y = u. The operation of addition of two admissible bound vectors −→xy and
−→yz is defined by −→xy +−→yz = −→xz. The quasilinearization map is defined by

〈·, ·〉 : X2 ×X2 → R, (3)

〈
−→
ab,
−→
cd〉 :=

1

2

{
d(a, d)2 + d(b, c)2 − d(a, c)2 − d(b, d)2

}
, a, b, c, d,∈ X.

For each a, b, c, d, u ∈ X we have:



Fitzpatrick transform of monotone relations 176

(i) 〈
−→
ab,
−→
cd〉 = 〈

−→
cd,
−→
ab〉,

(ii) 〈
−→
ab,
−→
cd〉 = −〈

−→
ba,
−→
cd〉,

(iii) 〈
−→
ab,
−→
cd〉 = 〈−→au,

−→
cd〉+ 〈

−→
ub,
−→
cd〉.

A metric space (X, d) satisfies the Cauchy-Schwarz inequality if for each
a, b, c, d ∈ X we have:

〈
−→
ab,
−→
cd〉 ≤ d(a, b)d(c, d). (4)

Cauchy-Schwarz inequality is an alternative approach to characterization of
the CAT(0) spaces. Indeed,

Theorem 2.1. [6, Corollary 3] A geodesic metric space (X, d) is CAT(0) space
if and only if it satisfies the Cauchy-Schwarz inequality.

Now, in order to define the dual space of Hadamard space (X, d), consider
the map

Θ : R×X2 → C(X,R)

(t, a, b) 7→ Θ(t, a, b)x = t〈
−→
ab,−→ax〉, a, b, x ∈ X, t ∈ R,

where C(X,R) is the space of all continuous real-valued functions on X. By
using the Cauchy-Schwarz inequality (4), Θ(t, a, b) is a Lipschitz function with
Lipschitz semi-norm

L(Θ(t, a, b)) = |t|d(a, b), a, b ∈ X, t ∈ R. (5)

Recall that the Lipschitz semi-norm on C(X,R) is defined by

L : C(X,R)→ R

ϕ 7→ sup
{ϕ(x)− ϕ(y)

d(x, y)
: x, y ∈ X,x 6= y

}
.

The Lipschitz semi-norm (5) induces a pseudometric D on R ×X2, which is
defined by

D((t, a, b), (s, c, d)) = L(Θ(t, a, b)−Θ(s, c, d)), a, b, c, d ∈ X, t, s ∈ R.

Now, the pseudometric space (R×X2, D) can be considered as a subspace of
the pseudometric space of all real-valued Lipschitz functions (Lip(X,R), L).

Lemma 2.2. [2, Lemma 2.1] Let (X, d) be an Hadamard space. Then

D((t, a, b), (s, c, d)) = 0 if and only if t〈
−→
ab,−→xy〉 = s〈

−→
cd,−→xy〉 for all x, y ∈ X.
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It is easily seen that D induces an equivalence relation on R×X2. Indeed,
for each (t, a, b) ∈ R×X2, the equivalence class of (t, a, b) is given by

[t
−→
ab] =

{
s
−→
cd : D((t, a, b), (s, c, d)) = 0

}
.

The set of all equivalence classes equipped with the metric D, defined by

D([t
−→
ab], [s

−→
cd]) := D((t, a, b), (s, c, d)),

is called the dual space of the Hadamard space X, and is denoted by X∗. By

using the definition of equivalence classes, we get [−→aa] = [
−→
bb] for each a, b ∈ X.

In general X∗ acts on X2 by

〈x∗ ,−→xy〉 := t〈
−→
ab,−→xy〉, where x∗ = [t

−→
ab] ∈ X∗ and −→xy ∈ X2.

Throughout this paper, we use the following notation:〈 n∑
i=1

αix∗i ,
−→xy
〉

:=

n∑
i=1

αi〈x∗i ,
−→xy〉, αi ∈ R, x∗i ∈ X

∗,−→xy ∈ X2, n ∈ N.

In [10], Chaipunya and Kumam introduced the concept of linear dual space of
Hadamard space X, as follows:

X
♦

:=
{ n∑
i=1

αix∗i : αi ∈ R, x∗i ∈ X
∗, n ∈ N

}
.

The zero element of X
♦

is denoted by 0X♦ := [t−→aa], where a ∈ X and t ∈ R.
One can see that the evaluation 〈0X♦ , ·〉 vanishes on X2. It is worth mentioned
that X

♦
is a normed space with the norm ‖x♦‖♦ = L(x♦), for all x♦ ∈ X

♦
.

Indeed:

Lemma 2.3. [24, Proposition 3.5] Let X be an Hadamard space with linear
dual space X

♦
and let x♦ ∈ X♦

be arbitrary. Then

‖x♦‖♦ := sup
{∣∣〈x♦ ,

−→
ab〉 − 〈x♦ ,

−→
cd〉
∣∣

d(a, b) + d(c, d)
: a, b, c, d ∈ X, (a, c) 6= (b, d)

}
,

is a norm on X
♦
. In particular, ‖[t

−→
ab]‖♦ = |t|d(a, b).

Definition 2.4. [3, Section 2.2] Let (X, d) be an Hadamard space and let
f : X →]−∞,∞] be a function. Then

(i) domain of f is defined by

domf = {x ∈ X : f(x) <∞}.

Moreover, f is called proper if domf 6= ∅.
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(ii) f is lower semi-continuous (briefly, l.s.c.) if for each α ∈ R, the set
epif := {(x, α) ∈ X × R : f(x) ≤ α} is closed.

(iii) f is said to be convex if

f((1− λ)x⊕ λy) ≤ (1− λ)f(x) + λf(y),

where x, y ∈ X and λ ∈ [0, 1].

Moreover, f is called concave if −f is convex.

The set of all proper, l.s.c. and convex extended real-valued functions on X
is denoted by Γ(X).

Definition 2.5. [2, Definition 2.4] Let {xn} be a sequence in an Hadamard
space X. The sequence {xn} is said to be weakly convergent to x ∈ X if

limn→∞〈−−→xxn,−→xy〉 = 0, for all y ∈ X. In this case we write, xn
w−→ x.

Lemma 2.6. [24, Proposition 3.6] Let {xn} be a bounded sequence in an
Hadamard space (X, d) with linear dual space X

♦
and let {x♦

n} be a sequence

in X
♦
. If xn

w−→ x and x♦
n
‖·‖♦−−−→ x♦, then 〈x♦

n,
−−→xnz〉 → 〈x♦ ,−→xz〉, for all z ∈ X.

It is well known that convergence in the metric implies weak convergence.

3 Flat Hadamard spaces

Let X be an Hadamard space with linear dual space X
♦

and M ⊆ X × X♦
.

The domain and range of M are defined, respectively, by

Dom(M) := {x ∈ X : ∃x♦ ∈ X♦
s.t. (x, x♦) ∈M},

and
Range(M) := {x♦ ∈ X♦

: ∃x ∈ X s.t. (x, x♦) ∈M}.

Definition 3.1. [22, Definition 3.1] An Hadamard space (X, d) is said to be
flat if equality holds in the CN-inequality, i.e., for each x, y ∈ X and λ ∈ [0, 1],
the following holds:

d(z, (1− λ)x⊕ λy)2 = (1− λ)d(z, x)2 + λd(z, y)2 − λ(1− λ)d(x, y)2, z ∈ X.

Definition 3.2. Let X be an Hadamard space with linear dual space X
♦

and
p ∈ X be fixed. We say that M ⊆ X ×X♦

satisfies

(i) Fl-property if for each λ ∈ [0, 1], x♦ ∈ Range(M) and x, y ∈ Dom(M);〈
x♦ ,
−−−−−−−−−−−−→
p((1− λ)x⊕ λy)

〉
≤ (1− λ)〈x♦ ,−→px〉+ λ〈x♦ ,−→py〉. (6)
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(ii) Fg-property if for each λ ∈ [0, 1], x♦ ∈ Range(M) and x, y ∈ Dom(M);〈
x♦ ,
−−−−−−−−−−−−→
p((1− λ)x⊕ λy)

〉
≥ (1− λ)〈x♦ ,−→px〉+ λ〈x♦ ,−→py〉. (7)

(iii) F-property if it has both Fl and Fg-property.

Throughout this paper, let P ∈ {F,Fl,Fg} and

P :=


F if P = F,

Fg if P = Fl,

Fl if P = Fg.

Remark 3.3. Note that

(i) Fl-property is investigated in [21], also it is introduced in [20] as W-property.

(ii) One can see that P-property is independent of the choice of p ∈ X. For
instance, let M ⊆ X×X♦

satisfies in Fg-property for some p ∈ X. Then
for each λ ∈ [0, 1], x♦ ∈ Range(M) and x, y ∈ Dom(M), we have:〈

x♦ ,
−−−−−−−−−−−−→
p((1− λ)x⊕ λy)

〉
≥ 〈x♦ ,−→px〉+ λ(〈x♦ ,−→py〉 − 〈x♦ ,−→px〉).

Therefore, 〈
x♦ ,
−−−−−−−−−−−−→
p((1− λ)x⊕ λy)−−→px

〉
≥ λ〈x♦ ,−→py −−→px〉,

and hence we conclude that 〈x♦ ,
−−−−−−−−−−−−→
x((1− λ)x⊕ λy)〉 ≥ λ〈x♦ ,−→xy〉.

(iii) If M ⊆ X ×X♦
has P-property, then any subset of M has this property

too.

(iv) M ⊆ X ×X♦
has P-property if and only if M♦- has P-property, where

M♦- := {(x,−x♦) : (x, x♦) ∈M}.

Lemma 3.4. [22, Theorem 3.2] Let X be an Hadamard space. Then X is flat
if and only if for each x, y ∈ X and λ ∈ [0, 1]:

〈
−−−−−−−−−−−−→
x((1− λ)x⊕ λy),

−→
ab〉 = λ〈−→xy,

−→
ab〉, a, b ∈ X. (8)

Theorem 3.5. The following statements for an Hadamard space X are equiv-
alent.
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(i) X is flat.

(ii) X ×X♦
has P-property.

(iii) Any subset of X ×X♦
has P-property.

Proof. Accordance with Remark 3.3(iii)&(iv) and the fact that
(
X ×X♦)

♦- =

X × X♦
, it suffices to consider only the case that P = Fl. Indeed, we prove

that X is flat if and only if X ×X♦
has Fl-property. Let x, y ∈ X,λ ∈ [0, 1]

and x♦ ∈ X♦
. Then x♦ =

∑n
i=1 αi[ti

−−→
aibi], where n ∈ N, 1 ≤ i ≤ n, αi, ti ∈ R

and ai, bi ∈ X. Hence, by using Lemma 3.4, we get:

〈x♦ ,
−−−−−−−−−−−−→
x((1− λ)x⊕ λy)〉 =

〈 n∑
i=1

αi[ti
−−→
aibi],

−−−−−−−−−−−−→
x((1− λ)x⊕ λy)

〉
=

n∑
i=1

αiti
〈−−→
aibi,

−−−−−−−−−−−−→
x((1− λ)x⊕ λy)

〉
≤ λ

n∑
i=1

αiti〈
−−→
aibi,

−→xy〉

= λ〈x♦ ,−→xy〉.

Therefore X×X♦
has Fl-property. For the converse, it is sufficient to consider

p := x and x♦ := ±[
−→
ab] in (6) and apply Lemma 3.4.

Example 3.6. Let (X, d) be an Hadamard space with linear dual space X
♦
.

As a trivial example, any singleton set {(x, x♦)} ⊆ X × X♦
has F-property.

For a non-trivial example, consider

M =
{(
x, x♦ =

[
α
−−−→
xc(µ)

])
: x, y ∈ X, c(µ) = (1− µ)x⊕ µy, µ ∈ [0, 1], α ∈ R

}
.

Then

〈x♦ ,
−−−→
xc(λ)〉 − λ〈x♦ ,−→xy〉 =

〈[
α
−−−→
xc(µ)

]
,
−−−→
xc(λ)

〉
− λ

〈[
α
−−−→
xc(µ)

]
,−→xy
〉

= α
〈−−−→
xc(µ),

−−−→
xc(λ)

〉
− λα

〈−−−→
xc(µ),−→xy

〉
=

1

2
α
((
d(x, c(λ))2 + d(x, c(µ))2 − d(c(λ), c(µ))2

)
− λ

(
d(x, y)2 + d(c(µ), x)2 − d(c(µ), y)2

))
=

1

2
αd(x, y)2

(
λ2 + µ2 − (λ− µ)2 − λ

(
1 + µ2 − (1− µ)2

))
= 0.

Therefore, 〈x♦ ,
−−−→
xc(λ)〉 = λ〈x♦ ,−→xy〉. Hence, M has F-property.
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The next example shows that there exists a relation M ⊆ X ×X♦
in the

non-flat Hadamard spaces which doesn’t have the P-property.

Example 3.7. Consider the following equivalence relation on N× [0, 1]:

(n, t) ∼ (m, s)⇔ t = s = 0 or (n, t) = (m, s).

Set X := N×[0,1]
∼ and let d : X ×X → R be defined by

d([(n, t)], [(m, s)]) =

{
|t− s| n = m,

t+ s n 6= m.

The geodesic joining x = [(n, t)] to y = [(m, s)] is defined as follows:

(1− λ)x⊕ λy :=

{
[(n, (1− λ)t− λs)] 0 ≤ λ ≤ t

t+s ,

[(m, (λ− 1)t+ λs)] t
t+s ≤ λ ≤ 1,

whenever x 6= y and vacuously (1 − λ)x ⊕ λx := x for each λ ∈ [0, 1]. It is
known that (see [1, Example 4.7]) (X, d) is an R-tree space. It follows from [3,
Example 1.2.10], that R-tree spaces are Hadamard space. For each n ∈ N, set
xn := [(n, 12 )] and yn := [(n, 1

n )]. Set M :=
{

(xn, [
−−−−→yn+1yn]) : n ∈ N

}
⊆ X×X♦

.

Let λ = 3
4 and x♦ =

[−−→y3y2]. Then

(1− λ)x4 ⊕ λy2 = [(2,
1

4
)],

and so 〈
x♦ ,
−−−−−−−−−−−−−−→
x4((1− λ)x4 ⊕ λy2)

〉
=

7

24
,

while, λ〈x♦ ,−−→x4y2〉 = 3
8 . Hence, M doesn’t have the Fg-property. On the other

hand, by choosing y♦ =
[−−→y4y3] we get:〈
y♦ ,
−−−−−−−−−−−−−−→
x4((1− λ)x4 ⊕ λy2)

〉
=

13

48
,

and λ〈y♦ ,−−→x4y2〉 = 3
16 . Then M doesn’t have the Fl-property. Hence, by defi-

nition, M doesn’t satisfy in F-property and hence by Theorem 3.5, X is not
flat.

Example 3.8. Let X be the same as in Example 3.7. Set

M :=
{(

[(1, t)],
[−−−−−−−−→
[(1, 0)][(1, t)]

])
: t ∈ [0, 1]

}
.
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Let x♦ =
[−−−−−−−−−→
[(1, 0)][(1, r)]

]
∈ Range(M), t, s ∈ [0, 1] with t 6= s, x = [(1, t)] and

y = [(1, s)]. Then x, y ∈ Dom(M) and for each λ ∈ [0, 1] we have:

(1− λ)x⊕ λy :=

{
[(1, (1− λ)t− λs)] 0 ≤ λ ≤ t

t+s ,

[(1, (λ− 1)t+ λs)] t
t+s ≤ λ ≤ 1,

(9)

and 〈
x♦ ,
−−−−−−−−−−−−→
x((1− λ)x⊕ λy)

〉
=

{
−rλ(t+ s) 0 ≤ λ ≤ t

t+s ,

r(λ(t+ s)− 2t) t
t+s ≤ λ ≤ 1.

(10)

On the other hand,
λ〈x♦ ,−→xy〉 = rλ(s− t). (11)

We observe that 〈
x♦ ,
−−−−−−−−−−−−→
x((1− λ)x⊕ λy)

〉
≤ λ〈x♦ ,−→xy〉,

thus M has Fl-property. Moreover, let x♦ =
[−−−−−−−−−→
[(1, 0)][(1, 13 )]

]
, x = [(1, 1)],

y = [(1, 12 )] and λ = 3
5 . By using (9), (10) and (11) we obtain:

(1− λ)x⊕ λy = [(1,
1

10
)],

〈
x♦ ,
−−−−−−−−−−−−→
x((1− λ)x⊕ λy)

〉
= − 3

10
,

and

λ〈x♦ ,−→xy〉 = − 1

10
.

Thus M doesn’t have Fg-property. It follows from Remark 3.3(iv) that

M♦- =
{(

[(1, t)],
[−−−−−−−−→
[(1, t)][(1, 0)]

])
: t ∈ [0, 1]

}
,

has Fg-property but doesn’t possess Fl-property.

Definition 3.9. Let X be an Hadamard space with linear dual space X
♦
.

(i) A sequence {xn} ⊆ X is bw-convergent to x ∈ X, if {xn} is bounded

and xn
w−→ x. In this case, we write xn

bw−→ x.

(ii) A sequence {(xn, x♦
n)} ⊆ X × X

♦
is called bw × ‖ ·‖♦-convergent to

(x, x♦) ∈ X × X♦
, if xn

bw−→ x and x♦
n
‖·‖♦−−−→ x♦ . In this case, we write

(xn, x
♦
n)

bw×‖·‖♦−−−−−→ (x, x♦).
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(iii) The mapping ϕ : X×X♦ →]−∞,∞] is said to be sequentially bw×‖·‖♦-

continuous at (x, x♦) ∈ X ×X♦
if for every {(xn, x♦

n)} ⊆ X ×X♦
, with

(xn, x
♦
n)

bw×‖·‖♦−−−−−→ (x, x♦) we have ϕ(xn, x
♦
n) → ϕ(x, x♦). Moreover, ϕ is

sequentially bw×‖·‖♦-continuous if it is sequentially bw×‖·‖♦-continuous

at each point of X ×X♦
.

Definition 3.10. For an arbitrary and fixed element p ∈ X, we define the
p-coupling function of the dual pair (X,X

♦
) as follows:

πp : X ×X♦ → R; (x, x♦) 7→ 〈x♦ ,−→px〉.

This function is useful in the formulation of some basic results of the mono-
tone relations in Hadamard spaces. Some properties of p-coupling function is
considered in the following Lemma.

Lemma 3.11. Suppose X is an Hadamard space with linear dual space X
♦
,

M ⊆ X ×X♦
and p ∈ X. Then πp is sequentially bw × ‖·‖♦-continuous and

hence continuous.

Proof. Let {(xn, x♦
n)} ⊆ X ×X♦

be such that (xn, x
♦
n)

bw×‖·‖♦−−−−−→ (x, x♦), where
(x, x♦) ∈ X ×X♦

. It follows from Lemma 2.6 that

〈x♦
n,
−−→pxn〉 → 〈x♦ ,−→px〉,

which implies that πp is sequentially bw × ‖ · ‖♦-continuous. Moreover, since
convergence in the metric implies weak convergence, we conclude that πp is
continuous.

Lemma 3.12. Suppose X is an Hadamard space with linear dual space X
♦
,

M ⊆ X ×X♦
and p ∈ X. Then the following hold:

(i) If M has the Fl-property, then πp is convex with respect to its first vari-
able on M ; in the sense that, for each x, y ∈ Dom(M), each λ ∈ [0, 1]
and each x♦ ∈ Range(M),

πp
(
(1− λ)x⊕ λy, x♦

)
≤ (1− λ)πp(x, x♦) + λπp(y, x♦).

(ii) If M satisfies the Fg-property, then πp is concave with respect to its first
variable on M , where concavity has a similar interpretation to that of
convexity.

(iii) If M has the F-property, then πp is an affine mapping with respect to
its first variable on M , in the sense that, for each x, y ∈ Dom(M), each
λ ∈ [0, 1] and each x♦ ∈ Range(M);

πp
(
(1− λ)x⊕ λy, x♦

)
= (1− λ)πp(x, x♦) + λπp(y, x♦).
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(iv) πp is linear with respect to it’s second variable on X ×X♦
.

Proof. (i): Let x♦ ∈ Range(M), x, y ∈ Dom(M) and λ ∈ [0, 1]. By Fl-property
of M , we get:

πp
(
(1− λ)x⊕ λy, x♦

)
= 〈x♦ ,

−−−−−−−−−−−−→
p((1− λ)x⊕ λy)〉

≤ (1− λ)〈x♦ ,−→px〉+ λ〈x♦ ,−→py〉
= (1− λ)πp(x, x♦) + λπp(y, x♦).

(ii): It follows from Remark 3.3(iv) that M♦- has Fl-property. Hence, πp is
convex with respect to its first variable on M♦-. Therefore, πp is concave
with respect to its first variable on M .

(iii): Let M has F-property. Since by Definition 3.2(iii), M has both of Fg
and Fl properties, we get πp is concave and convex on M , respectively.
Consequently, πp is an affine mapping on M .

(iv): Let x♦ , y♦ ∈ X♦
, x ∈ X and α, β ∈ R. Then

πp
(
x, αx♦ + βy♦

)
= 〈αx♦ + βy♦ ,−→px〉
= α〈x♦ ,−→px〉+ β〈y♦ ,−→px〉
= απp(x, x♦) + βπp(a, y♦),

and the result follows.

4 Monotone Relations

Ahmadi Kakavandi and Amini [2] introduced the notion of monotone oper-
ators in Hadamard spaces. In [14], Khatibzadeh and Ranjbar, investigated
some properties of monotone operators and their resolvents and also proximal
point algorithm in Hadamard spaces. Chaipunya and Kumam [10] studied the
general proximal point method for finding a zero point of a maximal monotone
set-valued vector field defined on Hadamard spaces with valued in its linear
dual. They proved the relation between the maximality and Minty’s surjectiv-
ity condition. Zamani Eskandani and Raeisi [24], by using products of finitely
many resolvents of monotone operators, proposed an iterative algorithm for
finding a common zero of a finite family of monotone operators and a com-
mon fixed point of an infinitely countable family of non-expansive mappings
in Hadamard spaces.

Definition 4.1. We say that (x, x♦) ∈ X × X
♦

and (y, y♦) ∈ X × X
♦

are
monotonically related, if 〈x♦ − y♦ ,−→yx〉 ≥ 0 and it is denoted by (x, x♦)µ(y, y♦).
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It is easy to see that µ is a reflexive and symmetric relation on X × X
♦
.

Moreover, (x, x♦) ∈ X ×X♦
is monotonically related to M if

(x, x♦)µ(y, y♦), for each (y, y♦) ∈M,

and this is denoted by (x, x♦)µM . The monotone polar of M is defined by

Mµ := {(x, x♦) ∈ X ×X♦
: (x, x♦)µM}.

A relation M ⊆ X × X♦
is called monotone if every (x, x♦), (y, y♦) ∈ M are

monotonically related.

Definition 4.2. Let X be an Hadamard space with linear dual space X
♦
. A

monotone relation M ⊆ X × X♦
is called maximal if there is no monotone

relation N ⊆ X ×X♦
that contains properly M .

In other words, a monotone relation M is maximal if M contains all its
monotonically related elements of X ×X♦

. The set of all maximal monotone
relations M ⊆ X ×X♦

is denoted by M(X).

Remark 4.3. Similar to Theorem 20.21 of [5], using Zorn’s Lemma, one can
deduce that any monotone relation in Hadamard spaces can be extended to
a maximal monotone relation. In other words, for each monotone relation
M ⊆ X×X♦

, there exists a maximal monotone relation M̃ such that M ⊆ M̃ .

Proposition 4.4. Let X be an Hadamard space and M ⊆ X ×X♦
. Then

(i) M is monotone if and only if M ⊆Mµ.

(ii) M ∈M(X) if and only if M = Mµ.

Proof. (i): A direct consequence of Definition 4.1.

(ii): Let M ∈M(X). It follows from (i) that M ⊆Mµ. On the other hand, let
(x, x♦) ∈Mµ. Hence, (x, x♦) is monotonically related to M . Maximality
of M implies that (x, x♦) ∈ M . Conversely, suppose that M = Mµ.
Then, by (i), M is monotone. Moreover, let (x, x♦) ∈ X × X♦

be such
that (x, x♦)µM , therefore (x, x♦) ∈ Mµ = M . Thus M is a maximal
monotone relation.

Example 4.5. Let M be the same as in Example 3.8. Then M is monotone.
To see this, consider(
x = [(1, t)], x♦ =

[−−−−−−−−→
[(1, 0)][(1, t)]

])
,
(
y = [(1, s)], y♦ =

[−−−−−−−−−→
[(1, 0)][(1, s)]

])
∈M.

Therefore,
〈x♦ − y♦ ,−→yx〉 = (t− s)2 ≥ 0.
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Moreover, M is not maximal. Take (y = [(1, s)], y♦ = [
−−−−−−−→
(1, s)(1, 0)]) ∈ X ×X♦

and
(
x = [(1, t)], x♦ =

[−−−−−−−−→
[(1, 0)][(1, t)]

])
∈M . Then, by simple calculations,

〈x♦ − y♦ ,−→yx〉 = t2 − s2.

Now, take 0 < s < t. Then (y, y♦)µM while (y, y♦) /∈ M . It follows from
Proposition 4.4(ii) that M is not a maximal monotone relation.

Example 4.6. Let (X, d) be a flat Hadamard space with linear dual space
X

♦
and f ∈ Γ(X). Define the mapping If : X × X

♦ × X
♦ →] − ∞,∞] by

If (x, x♦ , y♦) = infy∈X
{
f(y) + πy(x, x♦ + y♦)

}
. For any y♦ ∈ X♦

, set

Mf
y♦ :=

{
(x, x♦) ∈ X ×X♦

: If (x, x♦ , y♦) ≥ f(x)
}
.

It is shown that Mf
y♦ is a maximal monotone relation (see [21] for details).

5 Fitzpatrick transform

Krauss [15, 16, 17] represented maximal monotone operators by subdifferen-
tials of skew-symmetric saddle functions on E×E. Motivated by these works,
Fitzpatrick [13] suggested a non-trivial way to represent maximal monotone
operators by subdifferentials of convex functions on E × E∗, where E is a
reflexive Banach space and E∗ is its dual Banach space. Martinez-Legaz and
Théra [19] and Burachik and Svaiter [9], individually, rediscovered Fitzpatrick
transform. Some of recent advantages on monotone operator theory and their
Fitzpatrick transform can be found in [7, 12, 18] and the references cited
therein.

In this section, we define Fitzpatrick transform for subsets of X × X
♦
.

Then, some basic properties of Fitzpatrick transform, specially in the case
that M is monotone, are investigated. Also, we discuss the representation of
monotone relations from X to X

♦
, by proper, l.s.c. and convex functions on

X ×X♦
.

Let h : X ×X♦ → R := [−∞,+∞] be a function. We say that h is convex
if for each (x, x♦), (y, y♦) ∈ X ×X♦

and each λ ∈ [0, 1]:

h((1− λ)x⊕ λy, (1− λ)x♦ + λy♦) ≤ (1− λ)h(x, x♦) + λh(y, y♦),

and h is proper if −∞ /∈ h(X × X♦
) and h 6≡ ∞. In the sequel, we denote

the set of all extended real-valued convex lower semi-continuous and proper
functions on X ×X♦

by Γ(X ×X♦
).
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Given any h : X ×X♦ → R and p ∈ X, set

{h ≤ πp} := {(x, x♦) ∈ X ×X♦
: h(x, x♦) ≤ πp(x, x♦)},

{h < πp} := {(x, x♦) ∈ X ×X♦
: h(x, x♦) < πp(x, x♦)},

{h ≥ πp} := {(x, x♦) ∈ X ×X♦
: h(x, x♦) ≥ πp(x, x♦)},

{h > πp} := {(x, x♦) ∈ X ×X♦
: h(x, x♦) > πp(x, x♦)},

{h = πp} := {(x, x♦) ∈ X ×X♦
: h(x, x♦) = πp(x, x♦)}.

Obviously,
(i) {h = πp} = {h ≤ πp} ∩ {h ≥ πp},
(ii) {h < πp} = {h ≤ πp} \ {h = πp},
(iii) {h > πp} = {h ≥ πp} \ {h = πp}.

Definition 5.1. Let X be an Hadamard space, M ⊆ X × X♦
and p be an

arbitrary and fixed element of X. We define the p-Fitzpatrick transform of M
as follows:

ΦpM : X ×X♦ → [−∞,∞]

(x, x♦) 7→ sup
(y,y♦)∈M

{
〈x♦ ,−→py〉 − 〈y♦ ,−→xy〉

}
.

Note that, ΦpM ≡ −∞ if M = ∅; in fact we use the convention sup ∅ = −∞.

If M 6= ∅, then −∞ /∈ ΦpM (X × X♦
). In the sequel, we assume that M is a

nonempty subset of X ×X♦
.

Proposition 5.2. Let X be an Hadamard space, M ⊆ X × X♦
and p ∈ X.

Then for each (x, x♦) ∈ X ×X♦
we have:

ΦpM (x, x♦) = πp(x, x♦)− inf
(y,y♦)∈M

〈x♦ − y♦ ,−→yx〉.

Proof. By Definition 5.1, for each (x, x♦) ∈ X ×X♦
,

ΦpM (x, x♦) = sup
(y,y♦)∈M

{
〈x♦ ,−→py〉 − 〈y♦ ,−→xy〉

}
= sup

(y,y♦)∈M

{
〈x♦ ,−→px+−→xy〉 − 〈y♦ ,−→xy〉

}
= 〈x♦ ,−→px〉+ sup

(y,y♦)∈M
〈x♦ − y♦ ,−→xy〉

= πp(x, x♦)− inf
(y,y♦)∈M

〈x♦ − y♦ ,−→yx〉,

we are done.
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Proposition 5.3. Let X be an Hadamard space, M ⊆ X × X♦
and p ∈ X.

Then

(i) Mµ = {ΦpM ≤ πp}.

(ii) If M is monotone, then M ⊆ {ΦpM = πp}.

(iii) If M is maximal monotone, then X × X
♦ \ M ⊆ {ΦpM > πp}; i.e.,

{ΦpM ≤ πp} ⊆M .

(iv) If M is maximal monotone, then {ΦpM ≥ πp} = X ×X♦
.

(v) If M is maximal monotone, then {ΦpM = πp} = M .

(vi) If {ΦpM = πp} = M and {ΦpM ≥ πp} = X × X♦
, then M is maximal

monotone.

Proof. (i): By definition of Mµ, Proposition 5.2 and the definition of ΦpM , we
have:

(x, x♦) ∈Mµ ⇔ ∀(y, y♦) ∈M, 〈x♦ − y♦ ,−→yx〉 ≥ 0

⇔ inf
(y,y♦)∈M

〈x♦ − y♦ ,−→yx〉 ≥ 0

⇔ πp(x, x♦)− inf
(y,y♦)∈M

〈x♦ − y♦ ,−→yx〉 ≤ πp(x, x♦)

⇔ ΦpM (x, x♦) ≤ πp(x, x♦)

⇔ (x, x♦) ∈ {ΦpM ≤ πp}.

(ii): Let (x, x♦) ∈M . By monotonicity of M we get:

inf
(y,y♦)∈M

〈x♦ − y♦ ,−→yx〉 = 0.

Now, Proposition 5.2 completes the proof.

(iii): Let (x, x♦) ∈ X × X♦ \M . By maximality of M , we know that (x, x♦)
is not monotonically related to M . Hence there exists (z, z♦) ∈M such
that 〈x♦−z♦ ,−→zx〉 < 0, which implies that − inf(y,y♦)∈M 〈x♦−y♦ ,−→yx〉 > 0.
Now, it follows from Proposition 5.2 that

ΦpM (x, x♦) = πp(x, x♦)− inf
(y,y♦)∈M

〈x♦ − y♦ ,−→yx〉 > πp(x, x♦).

Therefore, X ×X♦ \M ⊆ {ΦpM > πp} and so {ΦpM ≤ πp} ⊆M .
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(iv): It follows from (ii) and (iii) that

X×X♦
= M ∪ (X×X♦ \M) ⊆ {ΦpM = πp}∪{ΦpM > πp} = {ΦpM ≥ πp};

i.e., {ΦpM ≥ πp} = X ×X♦
.

(v): By using (ii) we conclude that M ⊆ {ΦpM = πp}. On the other hand,
parts (iii) and (iv) imply that

{ΦpM = πp} = {ΦpM ≤ πp} ∩ {Φ
p
M ≥ πp}

⊆M ∩ (X ×X♦
)

= M.

Hence, {ΦpM = πp} = M .

(vi): Let (x, x♦) ∈M . By assumption (x, x♦) ∈ {ΦpM = πp}, so

inf
(y,y♦)∈M

〈x♦ − y♦ ,−→yx〉 = 0.

Therefore, for each (y, y♦) ∈ M , we have 〈x♦ − y♦ ,−→yx〉 ≥ 0; i.e., M is
monotone. It follows from part (i) and our assumptions that

Mµ = Mµ ∩ (X ×X♦
) = {ΦpM ≤ πp} ∩ {Φ

p
M ≥ πp} = {ΦpM = πp} = M.

Now, Proposition 4.4(ii) completes the proof.

Proposition 5.4. Let X be an Hadamard space, M ⊆ X × X♦
and p ∈ X.

Then

(i) ΦpM is proper and l.s.c.

(ii) ΦpM is convex, if M has Fl-property. In this case, ΦpM ∈ Γ(X ×X♦
).

Proof. (i): Clearly ΦpM is proper. For each (y, y♦) ∈ X × X
♦
, we define

ψ(y,y♦)(x, x♦) : X×X♦ → R by ψ(y,y♦)(x, x♦) = πp(y, x♦)+πy(x, y♦). Let

{(xn, x♦
n)} ⊆ X ×X♦

be such that (xn, x
♦
n)→ (x, x♦). By using Lemma

3.11, we get:

πp(y, x♦
n) + πy(xn, y♦)→ πp(y, x♦) + πy(x, y♦),

or equivalently,
ψ(y,y♦)(xn, x♦

n)→ ψ(y,y♦)(x, x♦),

which implies that ψ(y,y♦) is continuous. Consequently, ΦpM is lower
semi-continuous, since ΦpM (x, x♦) = sup(y,y♦)∈M ψ(y,y♦)(x, x♦).
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(ii) Let a, b ∈ X, x♦ ∈ X♦
and λ ∈ [0, 1]. Again, by using ψ(y,y♦) whenever

(y, y♦) ∈ X ×X♦
and Lemma 3.12(i) we obtain:

ψ(y,y♦)((1− λ)a⊕ λb, x♦) = πp(y, x♦) + πy((1− λ)a⊕ λb, y♦)

≤ πp(y, x♦) + (1− λ)πy(a, y♦) + λπy(b, y♦)

= (1− λ)(πp(y, x♦) + πy(a, y♦))

+ λ(πp(y, x♦) + πy(b, y♦))

= (1− λ)ψ(y,y♦)(a, x♦) + λψ(y,y♦)(b, x♦),

which implies that ψ(y,y♦) is convex. Thus

ΦpM (x, x♦) = sup
(y,y♦)∈M

ψ(y,y♦)(x, x♦),

is convex. Finally, by using (i), we obtain that ΦpM ∈ Γ(X ×X♦
).

Proposition 5.5. Let X be an Hadamard space, M ⊆ X×X♦
be a monotone

relation with Fl-property and p ∈ X. Then there exists h ∈ Γ(X ×X♦
) such

that {h ≥ πp} = X ×X♦
and M ⊆ {h = πp}; in other words:

(i) h(x, x♦) ≥ πp(x, x♦), for each (x, x♦) ∈ X ×X♦
.

(ii) (x, x♦) ∈M ⇒ h(x, x♦) = πp(x, x♦).

Proof. By using Remark 4.3 there exists M̃ ∈M(X) such that M ⊆ M̃ . Set
h := Φp

M̃
. It follows from Proposition 5.4 that h ∈ Γ(X×X♦

). Finally, (i) and

(ii) follow from parts (iv) and (ii) of Proposition 5.3, respectively.

Proposition 5.6. Let X be an Hadamard space and let M ⊆ X × X♦
has

Fg-property. If there exists h ∈ Γ(X ×X♦
) such that {h ≥ πp} = X ×X♦

and
M ⊆ {h = πp}, then M is monotone.

Proof. Take (x, x♦) ∈ M and (y, y♦) ∈ M . Then h(x, x♦) = πp(x, x♦) and

h(y, y♦) = πp(y, y♦). Now, {h ≥ πp} = X × X
♦
, convexity of h and Fg-

property of M imply that

0 ≤ 1

2
h(x, x♦) +

1

2
h(y, y♦)− h

(
1

2
x⊕ 1

2
y,

1

2
x♦ +

1

2
y♦

)
≤ 1

2
πp(x, x♦) +

1

2
πp(y, y♦)− πp

(
1

2
x⊕ 1

2
y,

1

2
x♦ +

1

2
y♦

)
=

1

2
〈x♦ ,−→px〉+

1

2
〈y♦ ,−→py〉 −

〈
1

2
x♦ +

1

2
y♦ ,
−−−−−−−−→
p
(1

2
x⊕ 1

2
y
)〉

=
1

2
〈x♦ ,−→px〉+

1

2
〈y♦ ,−→py〉 − 1

2

〈
x♦ ,
−−−−−−−−→
p
(1

2
x⊕ 1

2
y
)〉
− 1

2

〈
y♦ ,
−−−−−−−−→
p
(1

2
x⊕ 1

2
y
)〉
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≤ 1

2
〈x♦ ,−→px〉+

1

2
〈y♦ ,−→py〉 − 1

4
〈x♦ ,−→px〉 − 1

4
〈x♦ ,−→py〉 − 1

4
〈y♦ ,−→px〉 − 1

4
〈y♦ ,−→py〉

=
1

4

(
〈x♦ ,−→px〉 − 〈x♦ ,−→py〉 − 〈y♦ ,−→px〉+ 〈y♦ ,−→py〉

)
=

1

4
〈x♦ − y♦ ,−→yx〉.

Thus M is monotone.

Theorem 5.7. Let X be an Hadamard space, M ⊆ X × X♦
has F-property

and p ∈ X. Then M is monotone if and only if there exists h ∈ Γ(X ×X♦
)

such that {h ≥ πp} = X ×X♦
and M ⊆ {h = πp}.

Proof. It is an immediate consequence of Proposition 5.5 and Proposition 5.6

Corollary 5.8. Let X be a flat Hadamard space. Then M ⊆ X × X
♦

is
a monotone relation if and only if there exists h ∈ Γ(X × X

♦
) such that

{h ≥ πp} = X ×X♦
and M ⊆ {h = πp}.

Proof. It follows from Theorem 3.5 and Theorem 5.7.
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[11] Ş. Cobzaş, R. Miculescu and A. Nicolae, Lipschitz Functions, Springer,
(2019).

[12] L. M. Elias and J.-E. Martinez-Legaz, A generalization of the strong Fitz-
patrick inequality, Optimization 66(6)(2017), 917–923.

[13] S. Fitzpatrick, Representing monotone operators by convex functions, n
Workshop and Miniconference on Functional Analysis and Optimization
(Canberra, 1988), (Austral. Nat. Univ., Canberra, 1988) 59–65.

[14] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal
point algorithm in complete CAT(0) metric spaces, J. Aust. Math. Soc.
103(2017), 70–90.

[15] E. Krauss, A representation of arbitrary maximal monotone operators
via subgradients of skew-symmetric saddle functions, Nonlinear Anal.
9(12)(1985), 1381–1399.

[16] E. Krauss, A representation of maximal monotone operators by saddle
functions, Rev. Roumaine Math. Pures Appl. 30(10)(1985), 823–837.

[17] E.Krauss, Maximal monotone operators and saddle functions, I. Z. Anal.
Anwendungen, 5(4)(1986), 333–346.

[18] J.-E. Martinez-Legaz and B. F. Svaiter, Monotone operators representable
by l.s.c. functions, Set-Valued Anal. 13(2005), 21–46.
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